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Many large and small decisions we make in our daily lives—which ice cream to choose, what research
projects to pursue, which partner to marry—require an exploration of alternatives before committing
to and exploiting the benefits of a particular choice. Furthermore, many decisions require
re-evaluation, and further exploration of alternatives, in the face of changing needs or circumstances.
That is, often our decisions depend on a higher level choice: whether to exploit well known but possibly
suboptimal alternatives or to explore risky but potentially more profitable ones. How adaptive agents
choose between exploitation and exploration remains an important and open question that has
received relatively limited attention in the behavioural and brain sciences. The choice could depend on
a number of factors, including the familiarity of the environment, how quickly the environment is likely
to change and the relative value of exploiting known sources of reward versus the cost of reducing
uncertainty through exploration. There is no known generally optimal solution to the exploration
versus exploitation problem, and a solution to the general case may indeed not be possible. However,
there have been formal analyses of the optimal policy under constrained circumstances. There have
also been specific suggestions of how humans and animals may respond to this problem under
particular experimental conditions as well as proposals about the brain mechanisms involved. Here, we
provide a brief review of this work, discuss how exploration and exploitation may be mediated in the
brain and highlight some promising future directions for research.
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1. INTRODUCTION
Should I stay or should I go now?

If I go there will be trouble

And if I stay it may be double

So come on and let me know

Should I stay or should I go?

(The Clash)
Every researcher has personal experience with the

exploration–exploitation dilemma. At some point in

the conduct of a study, when the data are still

inconclusive, it may become necessary to decide how

to proceed. On the one hand, there is the option to

continue with the experiment, in the hope that with more

effort and data, the results will look more promising.

Alternatively, the experiment can be scrapped in favour

of a modified experimental design, a new approach to the

problem, or an entirely new research topic. That is, the

experimenter faces a trade-off between the value of

exploitation versus exploration. This example highlights

the importance of this problem in decision making,

one that has typically been ignored in psychological

research on cognitive control and executive function.
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The need to balance exploitation with exploration is
confronted at all levels of behaviour and time-scales of
decision making from deciding what to do next in the
day to planning a career path. It is confronted by
individuals in love (as captured by the lyrics above) and
by entire armies at war (should a campaign focus
intensively on one battle or seek to identify new
opportunities to surmount the enemy). Nor is it limited
to human behaviour. It is confronted by fungi deciding
whether to concentrate growth at a local site or
send out hyphae to sample more distant resources
(Watkinson et al. 2005); by ant colonies exploring
options for a new nest before settling on and exploiting
a particular site (Pratt & Sumpter 2006); by engineers
generating algorithms to deploy a fleet of automata to
map the expanses of a new environment (Leonard et al.
in press) and by machine learning theorists—who
coined the phrase ‘exploration versus exploitation’—
in their efforts to improve the ability of reinforcement
learning (RL) algorithms to function adaptively in
changing environments (e.g. Kaelbling et al. 1996).

In general, how agents should and do respond to the
trade-off between exploration and exploitation is poorly
understood. In part, this reflects the difficulty of the
problem: there is no known optimal policy for trading
off exploration and exploitation in general, even when
the objectives are well specified. Gittins & Jones (1974)
and Gittins (1979) presented a strategy and proved its
This journal is q 2007 The Royal Society
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optimality for a limited class of problems in which the
decisions are made from a finite number of stationary
bandit processes (e.g. options for which the reward is
delivered with unknown but fixed probabilities), and
when the agent discounts their value exponentially over
time. Gittins proved that if being optimal consists of
maximizing the cumulative reward over an infinite
horizon when the value of each reward is discounted
exponentially as a function of when it is acquired, then
the optimal policy is to calculate the expected total
future rewards associated with each option at a
particular time—a value known as the Gittins index—
and to select that bandit with the greatest Gittins index
(Gittins & Jones 1974; Gittins 1979). The significance
of Gittins’ contribution is that it reduced the decision
problem to computing and comparing these scalar
indices. In practice, computing the Gittins index is
not tractable for many problems for which it is known
to be optimal. However, for some limited problems,
explicit solutions have been found. For instance, the
Gittins index has been computed for certain two-
armed bandit problems (in which the agent chooses
between two options with independent probabilities of
generating a reward), and compared to the foraging
behaviour of birds under comparable circumstances;
the birds were found to behave approximately optimally
(Krebs et al. 1978).

While the Gittins index lends formal rigour to the
problem of exploration versus exploitation, proof of
its optimality requires strong assumptions about the
environment and the agent. The properties of the
individual bandits must be frozen unless acted upon
(i.e. the pay-off structure of the environment must be
stationary), all options must be available at all
decision points (i.e. there cannot be any ‘side
paths’) and agents must discount the value of rewards
exponentially into the future (Gittins 1979; Berry &
Fristedt 1985; Banks & Sundaram 1994). Real-world
problems typically violate one or more of these
assumptions.

Perhaps, the most important exception to Gittins’
assumptions is that real-world environments are
typically non-stationary; i.e. they change with time.
To understand how organisms manage the balance
between exploration and exploitation in non-stationary
environments, investigators have begun to study how
organisms adapt their behaviour in response to the
experimentally induced changes in reward contingen-
cies. Several studies have now shown that both humans
and other animals dynamically update their estimates
of rewards associated with specific courses of action,
and abandon actions that are deemed to be diminishing
in value in search of others that may be more rewarding
(e.g. Sugrue et al. 2004; Daw et al. 2006; Gilzenrat &
Cohen in preparation). At the same time, there is
also longstanding evidence that humans sometimes
exhibit an opposing tendency. When reward diminishes
(e.g. following an error in performance), subjects often
try harder at what they have been doing rather than less
(e.g. Rabbitt 1966; Laming 1979; Gratton et al. 1992).
The balance between exploration and exploitation also
seems to be sensitive to time horizons. Humans show
a greater tendency to explore when there is more
time left in a task, presumably because this allows
Phil. Trans. R. Soc. B (2007)
them sufficient time later to enjoy the fruits of

those explorations (Carstensen et al. 1999). A full

account of how people regulate the balance between

exploration and exploitation must account for these

diverse, and in some cases seemingly discrepant,

patterns of behaviour.

Recent findings are also beginning to shed light on

the neural mechanisms that underlie exploratory and

exploitative behaviours. These findings consistently

implicate the involvement of neuromodulatory systems

thought to be involved in assessing reward and

uncertainty. The midbrain dopamine system has been

implicated in the signalling of reward prediction errors

critical for learning the value of specific actions

(Montague et al. 1996; Schultz et al. 1997) and for

decision-making based on those values (McClure et al.
2003). The locus coeruleus (LC) noradrenergic system

has been proposed to govern the balance between

exploration and exploitation in response to reward

history (Aston-Jones & Cohen 2005). And the basal

forebrain cholinergic system together with the adre-

nergic system have been proposed to monitor uncer-

tainty, signalling both expected and unexpected forms,

respectively, which in turn might be used to promote

exploitation or exploration (Yu & Dayan 2005).

Regulating the balance between exploitation and

exploration is a fundamental need for adaptive

behaviour in a complex and changing world. In the

rest of this article, we consider the progress outlined

above that has been made in understanding this

problem in formal terms and in identifying the

mechanisms that have evolved in natural organisms

for meeting this challenge. While there has been recent

progress in identifying relevant empirical phenomena

and candidate neural mechanisms, such work is still in

the earliest stages. Accordingly, the connection

between theory and data remains largely speculative.

Our primary purpose here is to call attention to the

problem and point to relevant lines of research that

show promise in addressing it.
2. OPTIMAL PERFORMANCE IN STATIONARY
ENVIRONMENTS: THE GITTINS INDEX
In a landmark paper, Gittins & Jones (1974) developed

a straightforward means for calculating the optimal

strategy for decision making in multi-armed bandit

problems. Bandit problems are well suited for studying

the tension between exploitation and exploitation since

they offer a direct trade-off between exploiting a known

source of reward (continuing to play one arm of the

bandit) and exploring the environment (trying other

arms) to acquire information about other sources of

reward (Kaelbling 1996).

For an n-armed bandit problem, an agent is required

to choose between n options, each of which delivers

reward with a probability pi. The probability of

obtaining reward from a bandit, pi , may change through

time but only when a choice is made for that bandit. The

goal for the agent is to maximize expected rewards, Vi ,

where rewards earned in the future are discounted by an

exponential discount factor d2 (0, 1).
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Figure 1. Daw et al. (2006) examined how subjects handle the
exploration–exploitation problem in a four-armed bandit
problem. (a) In each trial of their task, subjects selected one
of the four bandits and received a reward based on its current
mean pay-off perturbed by noise. (b) The expected value of
each bandit changed continuously over time.
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Gittins & Jones proved that optimal performance
can be obtained by tracking a single index vi of the form

ni Z sup
TO0

PT
tZ0 d

tRiðtÞ
� �

PT
tZ0 d

t
� � ; ð2:1Þ

for each of the bandits, which is a normalized sum of
future rewards discounted by the delay until they are
accrued. The sum is taken until a time T, which is
defined as the stopping time, or the point at which
selecting from bandit i will be terminated. Gittins &
Jones proved that optimal behaviour is assured as long
as that action is always taken which has the greatest
index value. Critically, the Gittins index for any given
bandit is independent of the expected outcomes of all
other bandits. This implies that once the bandit with
greatest index is known, behaviour should continue on
this bandit until its index value falls below its original
value. This is true because the index values for all other
bandits do not change as long as these bandits are not
selected. Computationally, calculating the Gittins
index (equation (2.1)) is demanding and may not
reasonably be expected to be calculated in the brain.

The Gittins index provides a normative account of
how agents should act when faced with a particular
form of the exploration–exploitation dilemma. Krebs
et al. (1978) tested whether the foraging behaviour of
birds is optimal when confronting a two-armed bandit
problem similar to that solved by the Gittins index. In
the experiment, the birds were presented with two
feeding posts that gave food reward with fixed
probability. The problem was a simplification of the
general problem solved by the Gittins index, since the
probability of obtaining reward from a feeding post was
not allowed to change when selected and since the
experiment was of finite length. The investigators
found that the time at which birds stopped exploring
(operationalized as the point at which they stayed at
one feeding post) closely approximated that predicted
by the optimal solution. Despite their findings, Krebs
et al. (1978) recognized that it was highly unlikely that
their birds were carrying out the complex calculations
required by the Gittins index. Rather, they suggested
that the birds were using simple behavioural heuristics
that produces exploration times that qualitatively
approximate the optimal solution. However, there are
more fundamental problems with the Gittins index,
beyond complexity of calculation.

As noted earlier, Gittins’ proof requires that rewards
should be discounted exponentially for delay (Berry &
Fristedt 1985) whereas it is generally accepted that
most animals (including humans) show hyperbolic
discounting (e.g. Ainslie 1975). Additionally, if there is
a cost associated with switching from one behaviour to
another, then not only is the Gittins index no longer
optimal, but also there is no optimal index that may be
calculated independently for each bandit (Banks &
Sundaram 1994). It is well recognized that, under
many conditions, humans exhibit costs when switching
from one task to another (e.g. Allport et al. 1994;
Rogers & Monsell 1995). Most importantly, the Gittins
index assumes that, although the pay-offs for each
bandit are probabilistic and each must be sampled
sufficiently to determine its expected value, the actual
Phil. Trans. R. Soc. B (2007)
expected value of each remains fixed except when acted
upon. That is, if nothing is done to a bandit, then its
true value remains stable across time. However, both
the needs of most organisms and the environments in
which they live are not stable in this way. Things change
over time, even when they are not acted upon, and
often in unpredictable ways. To date, no universally
optimal algorithm has been described that prescribes
how to trade-off between exploration and exploitation
in non-stationary environments, and it is not clear that
doing so is possible. Thus, understanding how animals
respond to this problem must also be guided by
empirical investigation, both of behaviour and under-
lying neural mechanisms.
3. MODELLING EXPLOITATION VERSUS
EXPLORATION IN NON-STATIONARY
ENVIRONMENTS
Daw et al. (2006) recently addressed this problem in a
study that used a variant of the n-armed bandit
problem in which the pay-offs of each bandit changed
slowly over time (figure 1). In this setting, therefore, the
cost of persisting with one behaviour (i.e. playing only
one bandit) was not only the opportunity cost of failing
to learn more about the value of the others, but also the
possibility that what has already been learned about
them will fall out of date. Daw et al. (2006) proposed
three possible models for how subjects might guide
their choices in this situation.

The first model used a simple decision rule, in
which the subject maintains a record of the expected
value for each option, based on past experience, and
usually chooses the option with the greatest value
(exploitation) though sometimes, with a fixed prob-
ability, picks randomly among the other alternatives
(exploration). This is often referred to as the ‘epsilon-
greedy’ algorithm (Sutton & Barto 1998). According
to a second model, options are chosen by probability
matching, i.e. with a probability weighted by their
estimated values. This is often referred to as the ‘soft
max’ decision rule (e.g. Thrun 1992), as it favours
choosing the option with the maximum value (this
option will have the highest probability), though this
tendency is ‘softened’ by both the value of the
competing options as well as randomness (noise)
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added to the decision rule. Thus, in this model, the
balance between exploitation and exploration is
governed by both the relative value of the alternatives
as well as a parameter (referred to as gain or, inversely,
temperature) that determines how tightly decisions are
constrained by the contrast of value among the
alternatives: with higher gain, decisions are determined
more by relative value (exploitation); with lower
gain, decisions are more evenly distributed at
random (exploration).

Finally, they entertained a third model, according to
which choices are made using the soft max decision rule,
but with a critical added factor: options that have not
been selected receive an ‘uncertainty bonus’ that
augments their probability of being chosen (i.e.
promotes exploration). This captures the opportunity
cost that is formalized by the Gittins index for stationary
environments, and that is particularly important in
non-stationary environments: the more time allocated
to one option the less one knows about the others, which
may be (or have become) more valuable.

Daw et al. (2006) compared the behaviour of
subjects playing their n-arm bandit task to predictions
from each of the three models. The model that
provided the best fit was the soft max decision rule.
Importantly, although subjects did periodically explore
options other than the one currently deemed to be most
valuable, they did not find evidence that this was driven
by an uncertainty bonus (i.e. growing uncertainty
about the competing alternatives). However, there are
several caveats that must be kept in mind. First, it is
possible that the specifics of the environment did not
adequately favour the use of an uncertainty bonus. For
example, the pay-offs of each bandit changed continu-
ously and relatively slowly over time in their experi-
ment. In the real world—to which real-world organisms
are presumably adapted—the dynamics of environ-
mental change may be very different, and therefore call
for a different policy of exploration (and computation
of uncertainty bonus) than was assumed by Daw et al.
(2006). Another important factor may be social
context—people may be enticed to explore the
environment when they have information about the
behaviour of others, and they may also place a greater
premium on exploration when they face competition
from others for resources.

These are questions that beg more detailed formal
analysis. Nevertheless, to our knowledge, the Daw et al.
(2006) study was the first to address formally the question
of how subjects weigh exploration against exploitation in a
non-stationary, but experimentally controlled environ-
ment. It also produced some interesting neurobiological
findings. Their subjects performed the n-armed bandit
task while being scanned using functional magnetic
resonance imaging (fMRI). Among the observations
reported was task-related activity in two sets of regions
of prefrontal cortex (PFC). One set of regions was in
ventromedial PFC and was associated with both the
magnitude of reward associated with a choice, and that
predicted by their computational model of the task (using
the softmaxdecision rule).This areahasbeenconsistently
associated with the encoding of reward value across a
variety of task domains (O’Doherty et al. 2001; Knutson
et al. 2003; McClure et al. 2004; Padoa-Schioppa & Assad
Phil. Trans. R. Soc. B (2007)
2006). A second set of areas observed bilaterally in
frontopolar PFC was significantly more active when
subjects chose to explore (i.e. chose an option other
than the one estimated by their model to be the most
rewarding) rather than exploit. This finding is consistent
with the hypothesis that more anterior and dorsal regions
of PFC are responsible for top-down control, biasing
processes responsible for behaviour in favour of higher
level goals, especially when these must compete with
otherwise prepotent behaviours (e.g. Miller & Cohen
2001). Such top-down control may be important for
exploration, insofar as this involves selecting an action that
has been less recently associated with reward. That is,
when a decision is made to pursue an exploratory
behaviour, this may rely on support from higher level
control processes. However, this begs the question of how
the system decides when it is appropriate to explore. That
is, what mechanisms are responsible for assessing the
reliability and value of current rewards, and using this
information to determine when to continue to pursue
current sources of reward (exploit) or take a chance in
pursuing new behaviours (explore). Several lines of
investigation have begun to address this question.
4. UNCERTAINTY AND EXPLOITATION
VERSUS EXPLORATION
One line of work that has direct relevance addresses the
question of how the brain encodes different forms
of uncertainty. Yu & Dayan (2005) proposed that a
critical function of two important neuromodulators—
acetylcholine (ACh) and norepinephrine (NE)—may
be to signal expected and unexpected sources of
uncertainty. While the model they developed for this
was not intended to address the trade-off between
exploitation and exploration, the distinction between
expected and unexpected uncertainty is likely to be an
important factor in regulating this trade-off. For
example, the detection of unexpected uncertainty can
be an important signal of the need to promote
exploration. To see this, consider the following scenario.

You are asked to observe a series of coin tosses, told
that the coin is biased, and your job is to determine
whether it is biased towards heads or tails. The first
several tosses produce the following sequence: heads,
heads, tails, heads, heads, heads, heads. If you are forced
to choose at this point, like most observers, you would
probably say that the coin is biased towards heads. If
the next flip comes up tails, that is OK. You know that
the outcome of any particular toss is uncertain. This
represents an expected form of uncertainty. However,
consider what happens if the subsequent set of tosses is:
heads, tails, tails, tails, tails, tails, tails. At some point,
you will revise your determination and say that the coin
is biased towards tails. Perhaps, the coin was surrepti-
tiously switched (i.e. the world has changed) or your
determination was wrong in the first place. In either
case, having come to assume that the coin is biased
towards heads, you have now been confronted with an
unexpected form of uncertainty and must revise your
model of the world accordingly, along with the choice of
any actions that depend on it.

This problem is closely related to the example we
gave at the beginning of this article (concerning the
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collection of experimental data), and as we have noted
elsewhere (Aston-Jones & Cohen 2005), the distinction
between expected and unexpected forms of uncertainty
may be an important element in choosing between
exploitation versus exploration. As long as prediction
errors can be accounted for in terms of expected
uncertainty—that is the amount that we expect a given
outcome to vary—then all other things being equal
(e.g. ignoring potential non-stationarities in the
environment), we should persist in our current
behaviour (exploit). However, if errors in prediction
begin to exceed the degree expected—i.e. unexpected
uncertainty mounts—then we should revise our
strategy and consider alternatives (explore).

Yu & Dayan (2005) proposed that ACh levels are
used to signal expected uncertainty, and NE to signal
unexpected uncertainty. They describe a computation-
ally tractable algorithm by which these may be estimated
that approximates the Bayesian optimal computation of
those estimates. Furthermore, they proposed how these
estimates, reflected by NE and ACh levels, could be
used to determine when to revise expectations

NEO
ACh

ð0:5CAChÞ
: ð4:1Þ

They showed that this closely approximates the
Bayesian optimal solution to, and people’s behaviour
in, a variant of a commonly used selective attention task
(the ‘Posner paradigm’; Posner et al. 1980).

This work provides another instructive example of
the value in conducting a mathematical analysis of
optimal performance in a task, and using this to guide
the generation of hypotheses about the specific
mechanisms—in this case neural—that govern
behaviour in that task. Furthermore, it lends precision
to hypotheses about the function of neuromodulatory
systems. Despite their ubiquity in the brain, theories
about these systems have typically been vague,
proposing non-specific functions such as the mediation
of motivation and arousal. Yu and Dayan’s model
assigns precise functions to ACh and NE, specified in
mathematical form, that can be used to generate
specific testable predictions.

As suggested above, it is not hard to imagine how the
functions ascribed to ACh and NE in representing
estimates of expected and unexpected forms of
uncertainty might play an important role in regulating
the balance between exploitation and exploration. As
estimates of unexpected uncertainty rise, and NE
approaches the threshold defined by equation (4.1),
the system promotes a revision of current expectations.
This could be an important signal to search for a new
model of the environment and a corresponding
behavioural strategy—i.e. exploration. Sometimes,
however, unexpected events are followed by the
opposite tendency: an increase in commitment to the
current behavioural strategy. For example, following
errors in simple reaction time tasks people often
become more cautious and improve their performance
(i.e. become more accurate; Rabbitt 1966; Laming
1979). Similarly, following interference in selective
attention tasks, subjects typically increase the focus of
their attention and improve performance (Gratton et al.
Phil. Trans. R. Soc. B (2007)
1992), especially when such interference is relatively
rare (Carter et al. 2000; Kerns et al. 2004).

The Yu & Dayan model also sensibly predicts that
performance should be best when expectations are most
accurate. However, when outcomes in a task become too
predictable, people often become bored and look for
other things to do (explore). Video game programmers
learned this lesson long ago, and routinely include
multiple levels in a game, so that when it becomes too
predictable, it is made more difficult in order to retain
players’ interest (i.e. keep them exploiting).

These observations suggest that additional
mechanisms may be involved in evaluating expectations
and in regulating the trade-off between exploration and
exploitation. Another closely related line of investi-
gation has sought to address some of these observations.
It too has suggested an important role for NE, building
on detailed physiological observations about the
dynamics of NE release, and proposing how this may
relate to assessments of reward as well as uncertainty.
5. UTILITY AND EXPLOITATION
VERSUS EXPLORATION
Virtually all of the NEreleased in the neocortex originates
from a small brainstem nucleus called the LC. Aston-
Jones et al. (1994, 1997) have observed that in the awake
behaving monkey the LC shifts between two operating
modes that correspond closely with behavioural per-
formance in a simple target detection task. In the ‘phasic
mode,’ when the animal is performing well (no misses
and very few false alarms), the LC shows only moderate
levels of tonic discharge, but responds phasically with a
burst of activity to target stimuli (but not to distractors).
In the ‘tonic mode’, the baseline level of discharge is
higher, but there are diminished or absent phasic
responses to target stimuli. In this mode, reaction time
to targets is slower and the animal commits a greater
number of false alarms to distractors. These two modes
most probably represent a continuum of LC function,
consistent with the formal theories described below.
However, we will continue to refer to two modes for
expository purposes, because the distinction between
them (or the extremes of function they represent) has
been proposed to be an important factor in influencing
the balance between exploration and exploitation.

Usher et al. (1999) developed a biophysically
detailed model of the LC that accounted for the
physiological observations outlined above and
suggested that these may play a role in regulating the
balance between exploitation and exploration. They
proposed that the phasic mode favours exploitation by
releasing NE specifically when a task-relevant event
occurs, thereby facilitating processing of that event. In
contrast, in the tonic mode, sustained release of NE
indiscriminately facilitates processing of all events
irrespective of their relevance to the current task and
thereby favours exploration. Note that the latter aligns
well with the role of NE proposed by Yu & Dayan
(2005), favouring exploration, if it is assumed that NE
in their model corresponds to tonic release.

The Usher et al. (1999) model describes physiologi-
cal mechanisms by which the LC may contribute to
regulating the balance between exploitation and
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Figure 2. Aston-Jones & Cohen (2005) propose that
exploration and exploitation may be mediated by separate
short- and long-term measures of utility (cost and reward).
Exploration and exploitation, in this model, are mediated by
the firing mode of norepinephrine neurons in the locus
coeruleus (LC).
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exploration. However, it does not specify what drives
the LC towards the phasic (exploitation) or tonic
(exploration) modes. Recently, Aston-Jones & Cohen
(2005) have proposed that this may be governed by
ongoing assessments of utility carried out in ventral and
medial frontal structures. As noted earlier, there is
extensive evidence that ventral regions within PFC
form part of a circuit responsible for encoding reward
value (e.g. Knutson et al. 2003; O’Doherty et al. 2001;
McClure et al. 2004; Padoa-Schioppa & Assad 2006).
There is also now a substantial body of evidence that
medial frontal structures, and in particular the anterior
cingulate cortex (ACC), encode costs. Regions within
the ACC have consistently been observed to respond to
pain, negative feedback, errors in performance, con-
flicts in processing and even mental effort, all of which
represent or are indicative of various forms of cost (e.g.
Miltner et al. 1997; Carter et al. 1998; Peyron et al.
2000; Botvinick et al. 2001; Holroyd & Coles 2002;
Yeung et al. 2004). Furthermore, recent anatomic
evidence indicates that these ventral and medial frontal
structures provide dense projections to the LC
(Rajkowski et al. 2000; Aston-Jones et al. 2002).

Based on these findings, Aston-Jones & Cohen
(2005) have proposed that ongoing assessments of
utility carried in frontal structures are used to govern
the mode of LC and thereby regulate the balance
between exploitation and exploration. Specifically, they
propose that assessments of utility are carried out over
both short (e.g. seconds) and long (e.g. minutes) time-
scales and that this can reconcile the opposing
tendencies (to ‘try harder’ versus ‘give up’) following
periods of poor performance noted above. For
example, consider the following two circumstances.
In one, performance in a task has been good and there
are still rewards to be accrued from the task, but there
are occasional lapses in performance producing tran-
sient decreases in utility (e.g. on single trials). In this
case, following such a lapse the agent should act to
restore performance. That is, exploitation should be
promoted when long-term utility has been high, but
there has been a momentary decrease. In contrast,
consider a second situation in which performance has
been poor and utility has progressively declined. At
some point, this should encourage disengagement from
the current task and exploration of alternative
behaviours. That is, how the system responds to a
current decrease in utility should depend upon the
context of longer term trends in utility, favouring
exploitation if long-term utility has been high, and
exploration if it has been low. A relatively simple
equation can capture these relationships,

Engagement in current task

Z ½1Klogisticðshort-term utilityÞ�

!½logisticðlong-term utilityÞ�; ð5:1Þ

where logistic refers to the sigmoid function1/(1CeKutility).
Aston-Jones & Cohen (2005) proposed that high
values of this equation favour the LC phasic mode
(exploitation), whereas low values favour the tonic
mode (exploration; figure 2). Usher et al. (1999) and
Brown et al. (2005) both suggest the ways in which this
can be accomplished through the regulation of simple
Phil. Trans. R. Soc. B (2007)
physiological parameters (such as electronic coupling
and/or baseline afferent drive) within the LC.

This model can also be related to the soft max
mechanism that Daw et al. (2006) found best fits
decision-making behaviour in their n-armed bandit
task. The effect of the LC can be thought of as tuning
the softmax function, sharpening it (phasic mode) and
biasing decisions towards the most recently rewarded
choices (i.e. exploitation) when long-term utility is high,
and flattening the function (tonic mode) promoting a
more uniform distribution of choices (exploration) when
long-term utility is low. Whether such effects are
observed in a suitably designed n-armed bandit
decision-making task remains to be tested. However,
recent findings from a simpler, two-armed decision-
making task, that used pupilometry to index LC activity
(Aston-Jones & Cohen 2005), have corroborated pre-
dictions of the model regarding the relationship of LC
activity to decision-making performance (Gilzenrat &
Cohen in preparation). This work has also recently been
extended to explore the interaction between these
mechanisms and those underlying RL.
6. REINFORCEMENT LEARNING AND
EXPLOITATION VERSUS EXPLORATION
The trade-off between exploration and exploitation has
long been recognized as a central issue in RL
(Kaelbling 1996, 2003). The RL mechanisms act by
strengthening associations (e.g. between a stimulus and
an action) when these have been associated with a
reward (e.g. Sutton & Barto 1998). There is now strong
reason to believe that the dopaminergic (DA) system
implements such a mechanism (Montague et al. 1996;
see Montague et al. 2004 for a recent review). The RL
mechanisms function well in stationary environments,
in which progressive strengthening of associations
makes them robust and efficient, allowing the agent
to exploit the current environment. However, this also
makes them resistant to change, which is problematic
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Figure 3. A neural network model of how reward and cost are
integrated in the locus coeruleus to adaptively change
between exploration and exploitation, as proposed by
McClure et al. (2006). The left side shows a simple network
for decision making in the task. The right side shows
evaluative and neuromodulatory mechanisms that regulate
the decision-making mechanisms. The model proposes that
information about cost (calculated by the anterior cingulate
cortex (ACC)) and reward (calculated by the ventromedial
prefrontal cortex (vmPFC) and orbitofrontal cortex (OFC))
converge on both the ventral tegmental area (VTA) and the
locus coeruleus (LC). This information is used by the VTA to
implement a reinforcement learning algorithm that adjusts
the weights in the decision network. In the LC, evaluative
information sets the mode of responding (phasic or tonic),
which, through norepinephrine (NE) release and gain
modulation of units in the decision network, regulates the
balance between exploration and exploitation (see text for
more detailed description).
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in non-stationary environments when the system must

be able to explore and learn new contingencies.

The simplest example of this is a reversal

conditioning paradigm, in which the agent learns a

set of associations (e.g. that a purple light calls for a

response and a pink light does not) and once they are

learned the contingencies are reversed. If the RL

mechanism ensures rapid and strong learning of the

initial association, then it will be difficult to adjust to

the change (the purple light will continue to elicit a

response). However, if RL operates more weakly, then

it will take longer to learn the initial association. A

common solution to this problem is to introduce an

annealing mechanism. When new learning is required

(i.e. there is uncertainty about the environment, and/or

utility declines), noise is added to the system, allowing

it to randomly explore new associations; noise is then

progressively reduced as newly rewarded associations

are discovered and these are strengthened. This is

similar to the tuning of the softmax decision function

described above. Indeed, McClure et al. (2006) have

described a model showing how the frontal and LC

mechanisms described above can function as such an

annealing mechanism when integrated with a

DA-based RL mechanism (figure 3).

Furthermore, they have shown that the behaviour of

the LC in this model closely parallels observations that

have been made from LC recordings in a reversal
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conditioning paradigm using a target detection task
(Aston-Jones et al. 1997). Performance of the task
following acquisition of the initial target was associated
with the LC phasic mode. When the contingencies were
reversed, LC tonic activity increased and phasic
responses diminished. Then, as the new target was
acquired, the LC returned to the phasic mode of
responding. These findings provide growing support
for the view that the LC noradrenergic system plays an
important role in mediating the balance between
exploitation and exploration. As the work of Aston-
Jones & Cohen (2005) and Yu & Dayan (2005) suggests,
ongoing assessments of both uncertainty and utility are
likely to be important in regulating this balance.
7. OPEN QUESTIONS AND CHALLENGES
In this article, we hope to have drawn attention to the
fact that managing the trade-off between exploitation
and exploration is a fundamental challenge for the
adaptive control of behaviour. While traditionally this
has not occupied centre stage in research on executive
function and cognitive control, we have reviewed several
lines of work that have productively begun to address this
issue. Nevertheless, many important questions remain.

First, it is should be noted that some of the work we
have reviewed addresses the estimation of uncertainty
(e.g. Yu & Dayan 2005), while other work focuses more
on the computation of utility and action selection (e.g.
Usher et al. 1999; Aston-Jones & Cohen 2005; Daw
et al. 2006). All of these are likely to be critical elements
in determining the trade-off between exploitation and
exploration. However, the specific relationship
between these remains to be examined directly. For
example, it would be valuable to understand how the
mechanisms proposed by Yu & Dayan (2005) to
compute assessments of uncertainty (i.e. prediction
errors) can be coupled to action selection, and how this
relates to the algorithm described by equation (5.1)—
proposed by Aston-Jones & Cohen (2005) to relate
assessments of utility to LC function and decision-
making performance.

It seems inescapable that, in addition to uncertainty
and utility, social signals are a critical factor adjudicat-
ing the trade-off between exploitation and exploration.
Observing others can provide critical counterfactual
information about the reward value of behavioural
strategies that one has not yet pursued oneself
(Montague et al. in press). Competition within a social
context may also help explain aspects of boredom—i.e.
the perplexing tendency to explore alternatives to
current behaviour when certainty of outcome
(including reward) is at its highest. If it is assumed
that more difficult tasks are both more remunerative
and less competitive (because fewer agents possess the
skills necessary to perform them), then performing a
task below one’s skill level carries an opportunity cost.
That is, it should be possible to find another task for
which one is still adequately competent, but that is
more difficult and less competitive, and therefore more
remunerative. Thus, boredom may in part reflect an
adaptive bias towards exploration when performance at
ceiling suggests that a more remunerative task can be
found (M. Todd 2006, personal communication).
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An important super-ordinate question is whether the
trade-off between exploitation and exploration should
be considered a single problem addressed by a unitary
set of mechanisms in the brain, or whether it represents a
family of problems spanning different scales, that are
addressed by different mechanisms. The time-scale of
neuromodulatory function suggests that these
mechanisms influence decisions that take place over
seconds or minutes. However, faster processes (e.g.
saccadic search mechanisms) and longer ones (planning
a career) may involve very different mechanisms.

Finally, an equally pressing question is whether it is
best to distinguish qualitatively between exploitation
and exploration, or whether these represent the
extremes of a continuum. For example, the models
we have discussed have, for the most part, treated
exploration as random search (e.g. increasing noise in
an annealing procedure). However, search can often be
structured by relatively sophisticated, domain-specific
heuristics (for example, in problem solving tasks;
Newell & Simon 1972). Such search processes may
involve temporally extended, goal-directed behaviours
that rely on mechanisms of cognitive control similar to
those required for exploitation within the context of
simpler tasks. Indeed, the findings of an association
between PFC activity and exploration in the Daw et al.
(2006) study may provide an example of this. These
considerations help underscore the need for a precise
formulation of the exploitation–exploration trade-off
within specific task environments.

More generally, this issue brings into focus an
important dimension for considering the trade-off
between exploration and exploitation: the extent to
which the environment to be explored is well-structured
(whether static or changing in predictable ways) versus
unknown and unpredictable. To the extent that it is
structured, then it should be possible to explore it in a
systematic fashion (we might refer to this as ‘controlled
exploration’). That is, at least from the theorist’s
perspective, it should be possible to identify an optimal
strategy for exploration that takes account of knowledge
about the various behavioural alternatives (the Gittins
index represents a special case of this). Under such
conditions, the decision of whether to exploit or explore
should weigh both the value of current pursuits as well as
informed expectations about the alternatives, and
exploration should be deterministic. Indeed, to the
extent that an optimal strategy can be found, this might
be thought of simply as higher level exploitation. Of
course, for realistically complex environments, theoreti-
cally optimal strategies are likely to be computationally
intractable, at least for biological mechanisms (this is so
for the Gittins index, even given its simplifying
assumptions). Thus approximations, including stochas-
tic ones (such as some of the mechanisms reviewed in
this article) may be more biologically realistic.

At the other end of this dimension are unknown and
unpredictable environments. Under such conditions,
the decision of whether to exploit or explore may focus
more profitably on assessments of performance in the
current task rather than on expectations about alterna-
tives. Similarly, strategies for exploration will necessarily
rely on cruder assumptions about behavioural alterna-
tives and search among them will be less structured and
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presumably more stochastic. Consideration of these
factors may be useful in guiding the next generation of
hypotheses about the mechanisms governing exploita-
tion and exploration in biological organisms.
8. SUMMARY AND CONCLUSIONS
This article began by reviewing efforts to formalize the
optimal solution to the trade-off between exploitation
and exploration. The Gittins index provides such a
solution, but applies to restricted circumstances (e.g.
only stationary environments). As yet, no general
solution has been found for non-stationary environ-
ments and, depending upon the breadth and charac-
teristics of the environment to be considered, this may
not be possible. Nonetheless, empirical studies of both
behaviour and neural mechanisms have begun to reveal
mechanisms that animals may use to adapt to changes
in the environment, by regulating the balance between
exploitation and exploration. These studies appear to
be converging on the view that neuromodulatory
systems—in particular, ACh and NE, interacting with
DA-mediated RL mechanisms—may play a critical role
in regulating this balance within certain domains of
behaviour. These systems appear to be responsive to
both estimates of uncertainty and utility. However,
social signals are also likely to be an important source of
information. More generally, the trade-off between
exploitation and exploration represents a challenge to
behaviour at all levels and over multiple time-scales. It
is not yet clear whether neuromodulatory mechanisms
serve the same function at all of these levels and time-
scales, or whether this relies on other mechanisms that
remain to be discovered. Given these considerations, it
seems probable that further research will require a
mixed (though not yet fully informed) strategy of
continuing to exploit promising lines of recent work,
while considering new ones to explore.
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